Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; 13(1): e0085023, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38095870

ABSTRACT

We report the draft genome sequence of a novel species, Exiguobacterium sp., isolated from a freshly harvested and untreated cantaloupe in North Carolina. The strain Exiguobacterium wild type exhibited inhibitory activity against the foodborne pathogen Listeria monocytogenes, including strains of diverse serotypes and genotypes, both on agar media and in biofilms.

2.
Appl Environ Microbiol ; 89(11): e0120523, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37888979

ABSTRACT

IMPORTANCE: Listeria monocytogenes causes severe foodborne illness and is the only human pathogen in the genus Listeria. Previous surveys of AMR in Listeria focused on clinical sources and food or food processing environments, with AMR in strains from wildlife and other natural ecosystems remaining under-explored. We analyzed 185 sequenced strains from wild black bears (Ursus americanus) from the United States, including 158 and 27 L. monocytogenes and L. innocua, respectively. Tetracycline resistance was the most prevalent resistance trait. In L. monocytogenes, it was encountered exclusively in serotype 4b strains with the novel Tn916-like element Tn916.1039. In contrast, three distinct, novel tetracycline resistance elements (Tn5801.UAM, Tn5801.551, and Tn6000.205) were identified in L. innocua. Interestingly, Tn5801.551 was identical to elements in L. monocytogenes from a major foodborne outbreak in the United States in 2011. The findings suggest the importance of wildlife and non-pathogenic Listeria species as reservoir for resistance elements in Listeria.


Subject(s)
Listeria monocytogenes , Listeria , Ursidae , Animals , Humans , United States , Listeria monocytogenes/genetics , DNA Transposable Elements , Tetracycline Resistance/genetics , Animals, Wild , Ecosystem , Listeria/genetics , Food Microbiology
3.
Microbiol Resour Announc ; 12(7): e0024823, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37272806

ABSTRACT

Listeria monocytogenes is responsible for severe foodborne disease and major economic losses, but its potential reservoirs in natural ecosystems remain poorly understood. Here, we report the draft genome sequences of 158 L. monocytogenes strains isolated from black bears (Ursus americanus) in the southeastern United States between 2014 and 2017.

4.
Appl Environ Microbiol ; 89(2): e0209722, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36728444

ABSTRACT

Listeria monocytogenes causes the severe foodborne disease listeriosis. Several clonal groups of L. monocytogenes possess the pathogenicity islands Listeria pathogenicity island 3 (LIPI-3) and LIPI-4. Here, we investigated the prevalence and genetic diversity of LIPI-3 and LIPI-4 among 63 strains of seven nonpathogenic Listeria spp. from the natural environment, i.e., wildlife (black bears [Ursus americanus]) and surface water. Analysis of the whole-genome sequence data suggested that both islands were horizontally acquired but differed considerably in their incidence and genetic diversity. LIPI-3 was identified among half of the L. innocua strains in the same genomic location as in L. monocytogenes (guaA hot spot) in a truncated form, with only three strains harboring full-length LIPI-3, and a highly divergent partial LIPI-3 was observed in three Listeria seeligeri strains, outside the guaA hot spot. Premature stop codons (PMSCs) and frameshifts were frequently noted in the LIPI-3 gene encoding listeriolysin S. On the other hand, full-length LIPI-4 without any PMSCs was found in all Listeria innocua strains, in the same genomic location as L. monocytogenes and with ~85% similarity to the L. monocytogenes counterpart. Our study provides intriguing examples of genetic changes that pathogenicity islands may undergo in nonpathogenic bacterial species, potentially in response to environmental pressures that promote either maintenance or degeneration of the islands. Investigations of the roles that LIPI-3 and LIPI-4 play in nonpathogenic Listeria spp. are warranted to further understand the differential evolution of genetic elements in pathogenic versus nonpathogenic hosts of the same genus. IMPORTANCE Listeria monocytogenes is a serious foodborne pathogen that can harbor the pathogenicity islands Listeria pathogenicity island 3 (LIPI-3) and LIPI-4. Intriguingly, these have also been reported in nonpathogenic L. innocua from food and farm environments, though limited information is available for strains from the natural environment. Here, we analyzed whole-genome sequence data of nonpathogenic Listeria spp. from wildlife and surface water to further elucidate the genetic diversity and evolution of LIPI-3 and LIPI-4 in Listeria. While the full-length islands were found only in L. innocua, LIPI-3 was uncommon and exhibited frequent truncation and genetic diversification, while LIPI-4 was remarkable in being ubiquitous, albeit diversified from L. monocytogenes. These contrasting features demonstrate that pathogenicity islands in nonpathogenic hosts can evolve along different trajectories, leading to either degeneration or maintenance, and highlight the need to examine their physiological roles in nonpathogenic hosts.


Subject(s)
Listeria monocytogenes , Listeria , Listeriosis , Humans , Genomic Islands , Listeria/genetics , Listeriosis/veterinary , Listeriosis/microbiology , Listeria monocytogenes/genetics , Genetic Variation , Food Microbiology
5.
Microbiol Spectr ; 11(1): e0274522, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36472431

ABSTRACT

Listeria monocytogenes is a Gram-positive, facultative intracellular foodborne pathogen capable of causing severe, invasive illness (listeriosis). Three serotypes, 1/2a, 1/2b, and 4b, are leading contributors to human listeriosis, with 4b including the major hypervirulent clones. The multiplex PCR scheme developed by Doumith and collaborators employs primers targeting specific lineages (e.g., lineage II-specific lmo0737, lineage I-specific LMOf2365_2059) or serotypes (e.g., serotype 4b-specific LMOf2365_1900). The Doumith scheme (DS) is extensively employed for molecular serotyping of L. monocytogenes due to its high accuracy, relative ease, and affordability. However, for certain strains, the DS serotype designations are in conflict with those relying on antibody-based schemes or whole-genome sequence (WGS) analysis. In the current study, all 27 tested serotype 4b strains with sequence type 782 (ST782) within the hypervirulent clonal complex 2 (CC2) were designated 1/2b/3b using the DS. These strains lacked the serotype 4b-specific gene LMOf2365_1900, while retaining LMOf2365_2059, which, together with prs, yields the DS 1/2b/3b profile. Furthermore, 15 serotype 1/2a strains of four STs, mostly from water, were designated 1/2b/3b using the DS. These strains lacked the lmo0737 cassette but harbored genomic islands with LMOf2365_2059, thus yielding the DS 1/2b/3b profile. Lastly, we investigated a novel, dual 1/2a-1/2b profile obtained using the DS with 21 serotype 1/2a strains of four STs harboring both the lmo0737 cassette and genomic islands with LMOf2365_2059. The findings suggest that for certain strains and clones of L. monocytogenes the DS designations should be viewed with caution and complemented with alternative tools, e.g., traditional serotyping or WGS analysis. IMPORTANCE Listeria monocytogenes is a foodborne pathogen responsible for severe illness (listeriosis), especially in pregnant women and their fetuses, immunocompromised individuals, and the elderly. Three serotypes, 1/2a, 1/2b, and 4b, account for most human listeriosis, with certain serotype 4b clonal complexes (CCs) overrepresented in human disease. Serotyping remains extensively employed in Listeria epidemiologic investigations, and a multiplex PCR-based serotyping scheme is widely used. However, the PCR gene targets can be lost or gained via horizontal gene transfer, leading to novel PCR profiles without known serotype designations or to incorrect serotype assignments. Thus, an entire serotype 4b clone of the hypervirulent CC2 would be misidentified as serotype 1/2b, and several strains of serotype 1/2a would be identified as serotype 1/2b. Such challenges are especially common in novel clones from underexplored habitats, e.g., wildlife and surface water. The findings suggest caution in application of molecular serotyping, while highlighting Listeria's diversity and potential for horizontal gene transfer.


Subject(s)
Listeria monocytogenes , Listeriosis , Pregnancy , Female , Humans , Aged , Listeria monocytogenes/genetics , Serogroup , Serotyping , Gene Transfer, Horizontal
6.
Pathogens ; 11(6)2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35745532

ABSTRACT

Campylobacter jejuni is commonly isolated on selective media following incubation at 37 °C or 42 °C, but the impact of these temperatures on genome variation remains unclear. Previously, Campylobacter selective enrichments from the feces of steers before and after ceftiofur treatment were plated on selective agar media and incubated at either 37 °C or 42 °C. Here, we analyzed the whole genome sequence of C. jejuni strains of the same multilocus sequence typing (MLST)-based sequence type (ST) and isolated from the same sample upon incubation at both temperatures. Four such strain pairs (one ST8221 and three ST8567) were analyzed using core genome and whole genome MLST (cgMLST, wgMLST). Among the 1970 wgMLST loci, 7-25 varied within each pair. In all but one of the pairs more (1.7-8.5 fold) new alleles were found at 42 °C. Most frameshift, nonsense, or start-loss mutations were also found at 42 °C. Variable loci CAMP0575, CAMP0912, and CAMP0913 in both STs may regularly respond to different temperatures. Furthermore, frameshifts in four variable loci in ST8567 occurred at multiple time points, suggesting a persistent impact of temperature. These findings suggest that the temperature of isolation may impact the sequence of several loci in C. jejuni from cattle.

7.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161265

ABSTRACT

Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), known as TAK1, is an intracellular signaling intermediate of inflammatory responses. However, a series of mouse Tak1 gene deletion analyses have revealed that ablation of TAK1 does not prevent but rather elicits inflammation, which is accompanied by elevation of reactive oxygen species (ROS). This has been considered a consequence of impaired TAK1-dependent maintenance of tissue integrity. Contrary to this view, here we propose that TAK1 inhibition-induced ROS are an active cellular process that targets intracellular bacteria. Intracellular bacterial effector proteins such as Yersinia's outer membrane protein YopJ are known to inhibit TAK1 to circumvent the inflammatory host responses. We found that such TAK1 inhibition induces mitochondrial-derived ROS, which effectively destroys intracellular bacteria. Two cell death-signaling molecules, caspase 8 and RIPK3, cooperatively participate in TAK1 inhibition-induced ROS and blockade of intracellular bacterial growth. Our results reveal a previously unrecognized host defense mechanism, which is initiated by host recognition of pathogen-induced impairment in a host protein, TAK1, but not directly of pathogens.


Subject(s)
Bacteria/growth & development , Intracellular Space/microbiology , MAP Kinase Kinase Kinases/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Animals , Caspase 3/metabolism , Colony Count, Microbial , Hydrogen Sulfide/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , Mice , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Salmonella/drug effects , Salmonella/growth & development , Yersinia/drug effects
8.
Antibiotics (Basel) ; 10(3)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802904

ABSTRACT

Listeria monocytogenes is a bacterial foodborne pathogen and the causative agent of the disease listeriosis, which though uncommon can result in severe symptoms such as meningitis, septicemia, stillbirths, and abortions and has a high case fatality rate. This pathogen can infect humans and other animals, resulting in massive health and economic impacts in the United States and globally. Listeriosis is treated with antimicrobials, typically a combination of a beta-lactam and an aminoglycoside, and L. monocytogenes has remained largely susceptible to the drugs of choice. However, there are several reports of antimicrobial resistance (AMR) in both L. monocytogenes and other Listeria species. Given the dire health outcomes associated with listeriosis, the prospect of antimicrobial-resistant L. monocytogenes is highly problematic for human and animal health. Developing effective tools for the control and elimination of L. monocytogenes, including strains with antimicrobial resistance, is of the utmost importance to prevent further dissemination of AMR in this pathogen. One tool that has shown great promise in combating antibiotic-resistant pathogens is the use of bacteriophages (phages), which are natural bacterial predators and horizontal gene transfer agents. Although native phages can be effective at killing antibiotic-resistant pathogens, limited host ranges and evolved resistance to phages can compromise their use in the efforts to mitigate the global AMR challenge. However, recent advances can allow the use of CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) to selectively target pathogens and their AMR determinants. Employment of CRISPR-Cas systems for phage amendment can overcome previous limitations in using phages as biocontrol and allow for the effective control of L. monocytogenes and its AMR determinants.

9.
Biomolecules ; 11(4)2021 04 11.
Article in English | MEDLINE | ID: mdl-33920493

ABSTRACT

Listeria monocytogenes, the bacterial foodborne pathogen responsible for the severe disease listeriosis, frequently exhibits heavy metal resistance. Concurrent resistance to cadmium and arsenic in L. monocytogenes is strongly associated with the 35-kb chromosomal island LGI2. LGI2 has been encountered repeatedly among L. monocytogenes serotype 4b hypervirulent clones but, surprisingly, not among non-pathogenic Listeria spp. Here we describe a novel LGI2 variant, LGI2-3, in two L. welshimeri strains from an urban aquatic environment. Whole genome sequence analysis revealed that the genomes were closely related except for one prophage region and confirmed a chromosomally integrated LGI2-3. It harbored a cystathionine beta-lyase gene previously only encountered in LGI2-1 of L. monocytogenes clonal complex 1 but was otherwise most closely related to LGI2. LGI2-3 harbored a novel cadAC cassette (cadA7C7) that, like LGI2's cadA4C4, was associated with lower-level tolerance to cadmium (MIC 50 µg/mL) than other cadAC cassettes (MIC ≥ 140 µg/mL). CadA sequence analysis identified two amino acids that may be important for mediating different levels of cadmium tolerance. Our findings clearly demonstrated the potential for LGI2-like islands to be harbored by non-pathogenic Listeria spp. and generate intriguing hypotheses on the genetic diversity mediated by this island and its transfer among Listeria spp.


Subject(s)
Arsenic/toxicity , Cadmium/toxicity , Drug Resistance, Bacterial , Genomic Islands , Listeria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Listeria/drug effects , Lyases/genetics , Lyases/metabolism
10.
Pathogens ; 10(2)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668492

ABSTRACT

Listeria monocytogenes is a Gram-positive bacterial pathogen and the causative agent of listeriosis, a severe foodborne infection. L. monocytogenes is notorious for its ability to persist in food processing environments (FPEs) via a variety of adaptive traits. Even though traits such as cold tolerance, biofilm formation and sanitizer resistance have been extensively investigated for their roles in persistence of L. monocytogenes in FPEs, much less is known about resistance to bacteriophages. Previous studies explored phage resistance mechanisms in laboratory-created mutants but it is imperative to investigate phage resistance that is naturally exhibited in FPE-derived strains. Here, we integrated the analysis of whole genome sequence data from a panel of serotype 1/2a strains of sequence types 321 and 391 from turkey processing plants, with the determination of cell surface substituents required for phage adsorption and phage infection assays with the four wide-host-range phages A511, P100, 20422-1 and 805405-1. Using a specific set of recombinant phage protein probes, we discovered that phage-resistant strains lacked one or both of the serogroup 1/2-specific wall teichoic acid carbohydrate decorations, N-acetylglucosamine and rhamnose. Furthermore, these phage-resistant strains harbored substitutions in lmo1080, lmo1081, and lmo2550, which mediate carbohydrate decoration of the wall teichoic acids.

11.
Methods Mol Biol ; 2220: 177-185, 2021.
Article in English | MEDLINE | ID: mdl-32975775

ABSTRACT

Genes that play a role in stress response mechanisms and other phenotypes of Listeria monocytogenes can be identified by construction and screening of mutant libraries. In this chapter, we describe the construction and screening of mutant libraries of L. monocytogenes using the plasmid pMC38, carrying a mariner-based transposon system (TC1/mariner) and constructed by Cao et al. (Appl Environ Microbiol 73:2758-2761, 2007). Following screening of mutant libraries, putative mutants are identified and the transposon is localized, leading to identification of the genes responsible for the phenotype of interest. To confirm the role of the transposon-harboring gene in the relevant phenotype, transposon mutants are genetically complemented with the wild-type gene using the site-specific temperature-sensitive integration vector pPL2, constructed by Lauer et al. (J Bacteriol 184:4177-4186, 2002).


Subject(s)
Genetic Vectors/genetics , Listeria monocytogenes/genetics , Mutation , Electroporation/methods , Humans , Listeriosis/microbiology , Mutagenesis, Insertional/methods , Plasmids/genetics , Polymerase Chain Reaction/methods , Retroelements
12.
Mol Microbiol ; 113(3): 560-569, 2020 03.
Article in English | MEDLINE | ID: mdl-31972871

ABSTRACT

Metal homeostasis in bacteria is a complex and delicate balance. While some metals such as iron and copper are essential for cellular functions, others such as cadmium and arsenic are inherently cytotoxic. While bacteria regularly encounter essential metals, exposure to high levels of toxic metals such as cadmium and arsenic is only experienced in a handful of special habitats. Nonetheless, Listeria and other Gram-positive bacteria have evolved an impressively diverse array of genetic tools for acquiring enhanced tolerance to such metals. Here, we summarize this fascinating collection of resistance determinants in Listeria, with special focus on resistance to cadmium and arsenic, as well as to biocides and antibiotics. We also provide a comparative description of such resistance determinants and adaptations in other Gram-positive bacteria. The complex coselection of heavy metal resistance and other types of resistance seems to be universal across the Gram-positive bacteria, while the type of coselected traits reflects the lifestyle of the specific microbe. The roles of heavy metal resistance genes in environmental adaptation and virulence appear to vary by genus, highlighting the need for further functional studies to explain the mystery behind the array of heavy metal resistance determinants dispersed and maintained among Gram-positive bacteria.


Subject(s)
Arsenic/metabolism , Cadmium/metabolism , Listeria/metabolism , Anti-Bacterial Agents/pharmacology , Arsenic/toxicity , Cadmium/toxicity , Drug Resistance, Bacterial/drug effects , Genes, Bacterial/drug effects , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/metabolism , Homeostasis/physiology , Listeria/genetics , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Metals, Heavy/toxicity , Virulence/drug effects
13.
Microb Biotechnol ; 13(3): 706-721, 2020 05.
Article in English | MEDLINE | ID: mdl-31713354

ABSTRACT

Listeria monocytogenes is the causative agent of the foodborne illness listeriosis, which can result in severe symptoms and death in susceptible humans and other animals. L. monocytogenes is ubiquitous in the environment and isolates from food and food processing, and clinical sources have been extensively characterized. However, limited information is available on L. monocytogenes from wildlife, especially from urban or suburban settings. As urban and suburban areas are expanding worldwide, humans are increasingly encroaching into wildlife habitats, enhancing the frequency of human-wildlife contacts and associated pathogen transfer events. We investigated the prevalence and characteristics of L. monocytogenes in 231 wild black bear capture events between 2014 and 2017 in urban and suburban sites in North Carolina, Georgia, Virginia and United States, with samples derived from 183 different bears. Of the 231 captures, 105 (45%) yielded L. monocytogenes either alone or together with other Listeria. Analysis of 501 samples, primarily faeces, rectal and nasal swabs for Listeria spp., yielded 777 isolates, of which 537 (70%) were L. monocytogenes. Most L. monocytogenes isolates exhibited serotypes commonly associated with human disease: serotype 1/2a or 3a (57%), followed by the serotype 4b complex (33%). Interestingly, approximately 50% of the serotype 4b isolates had the IVb-v1 profile, associated with emerging clones of L. monocytogenes. Thus, black bears may serve as novel vehicles for L. monocytogenes, including potentially emerging clones. Our results have significant public health implications as they suggest that the ursine host may preferentially select for L. monocytogenes of clinically relevant lineages over the diverse listerial populations in the environment. These findings also help to elucidate the ecology of L. monocytogenes and highlight the public health significance of the human-wildlife interface.


Subject(s)
Animals, Wild , Listeria monocytogenes , Listeriosis , Ursidae , Animals , Animals, Wild/microbiology , Listeria monocytogenes/isolation & purification , Listeria monocytogenes/physiology , Listeriosis/epidemiology , Listeriosis/microbiology , Listeriosis/transmission , Southeastern United States/epidemiology , Ursidae/microbiology
14.
BMC Vet Res ; 15(1): 467, 2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31864375

ABSTRACT

BACKGROUND: Listeria monocytogenes is a promising therapeutic vaccine vector for cancer immunotherapy. Although highly attenuated, three cases of systemic listeriosis have been reported in people following treatment with Listeria-based therapeutic vaccines. This complication has thus far not been reported in canine patients. CASE PRESENTATION: A dog previously diagnosed with osteoblastic osteosarcoma was presented for care following administration of three doses of the Canine Osteosarcoma Vaccine-Live Listeria Vector. On routine staging chest radiographs, mild sternal lymphadenopathy and a right caudoventral thoracic mass effect were noted. Further evaluation of the mass effect with computed tomography and ultrasound revealed a cavitated mass associated with the 7th right rib. Aspirates of the mass cultured positive for Listeria monocytogenes. The mass and associated ribs were surgically removed. Histopathology was consistent with metastatic osteoblastic osteosarcoma. Treatment was continued with doxorubicin chemotherapy and at the time of publication, the dog was alive over 1 year following diagnosis with no evidence of further disease progression. Genotyping of the abscess-derived L. monocytogenes was consistent with the vaccine strain. CONCLUSIONS: This case represents the first veterinary case to describe development of a Listeria abscess following administration of a Listeria-based therapeutic vaccine.


Subject(s)
Abscess/veterinary , Bone Neoplasms/veterinary , Listeria monocytogenes/isolation & purification , Listeriosis/veterinary , Osteosarcoma/veterinary , Abscess/microbiology , Animals , Bacterial Vaccines/adverse effects , Bone Neoplasms/prevention & control , Bone Neoplasms/secondary , Dogs , Immunotherapy/adverse effects , Immunotherapy/veterinary , Listeria monocytogenes/genetics , Listeriosis/diagnostic imaging , Listeriosis/microbiology , Osteosarcoma/prevention & control , Osteosarcoma/secondary
15.
Microbiol Resour Announc ; 8(47)2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31753950

ABSTRACT

There is currently limited knowledge of the genome sequences of nonpathogenic Listeria species, especially strains from wildlife. Here, we report the draft genome sequence and associated genome information of an antibiotic-resistant Listeria innocua strain, UAM003-1A, isolated from the feces of a black bear in California, USA.

16.
Microorganisms ; 7(11)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717272

ABSTRACT

Listeria monocytogenes is a foodborne pathogen that is widely distributed in nature, having been isolated from a variety of sources such as soil, water, plant matter, and animals. In addition, L. monocytogenes is often detected in the regular sampling of food and food processing environments. The most common method for detecting L. monocytogenes is the use of selective enrichments. Both lithium chloride and esculin, in combination with ferric ammonium citrate, are utilized in several of the most commonly-employed selective enrichment schemes for L. monocytogenes. Here we report that transposon-based inactivation of lmo1930, one of the genes in the menaquinone biosynthesis operon, via transposon mutagenesis severely impaired the ability of L. monocytogenes to grow in the presence of lithium chloride or hydrolyze esculin, and conferred reduced growth and colony size. All phenotypes were restored upon genetic complementation. Thus, strains of L. monocytogenes with mutations leading to inactivation of lmo1930 may evade many commonly-used selective enrichment protocols employed in the detection of L. monocytogenes.

17.
J Cell Biol ; 218(6): 1994-2005, 2019 06 03.
Article in English | MEDLINE | ID: mdl-30975711

ABSTRACT

RIPK3, a key mediator of necroptosis, has been implicated in the host defense against viral infection primary in immune cells. However, gene expression analysis revealed that RIPK3 is abundantly expressed not only in immune organs but also in the gastrointestinal tract, particularly in the small intestine. We found that orally inoculated Listeria monocytogenes, a bacterial foodborne pathogen, efficiently spread and caused systemic infection in Ripk3-deficient mice while almost no dissemination was observed in wild-type mice. Listeria infection activated the RIPK3-MLKL pathway in cultured cells, which resulted in suppression of intracellular replication of Listeria Surprisingly, Listeria infection-induced phosphorylation of MLKL did not result in host cell killing. We found that MLKL directly binds to Listeria and inhibits their replication in the cytosol. Our findings have revealed a novel functional role of the RIPK3-MLKL pathway in nonimmune cell-derived host defense against Listeria invasion, which is mediated through cell death-independent mechanisms.


Subject(s)
Listeria/growth & development , Listeriosis/prevention & control , Necroptosis , Protein Kinases/physiology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/physiology , Animals , Female , Humans , Listeria/immunology , Listeria/metabolism , Listeriosis/metabolism , Listeriosis/microbiology , Listeriosis/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
18.
Genes (Basel) ; 10(1)2018 Dec 24.
Article in English | MEDLINE | ID: mdl-30586907

ABSTRACT

Listeria monocytogenes is ubiquitous in the environment and causes the disease listeriosis. Metal homeostasis is one of the key processes utilized by L. monocytogenes in its role as either a saprophyte or pathogen. In the environment, as well as within an animal host, L. monocytogenes needs to both acquire essential metals and mitigate toxic levels of metals. While the mechanisms associated with acquisition and detoxification of essential metals such as copper, iron, and zinc have been extensively studied and recently reviewed, a review of the mechanisms associated with non-essential heavy metals such as arsenic and cadmium is lacking. Resistance to both cadmium and arsenic is frequently encountered in L. monocytogenes, including isolates from human listeriosis. In addition, a growing body of work indicates the association of these determinants with other cellular functions such as virulence, suggesting the importance of further study in this area.

19.
Pathogens ; 7(1)2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29389865

ABSTRACT

Listeria monocytogenes has been extensively studied as a model facultative intracellular pathogen. While the roles of major virulence factors in host-pathogen interactions have been extensively characterized, recent work suggests that some of these factors can also contribute to environmental proliferation of this pathogen. In this study, we characterized two non-hemolytic transposon mutants of strain 2011L-2858 (serotype 1/2b), implicated in the 2011 listeriosis outbreak via whole cantaloupe, for their capacity to form biofilms on polystyrene, aggregate, and colonize cantaloupe rind. One mutant harbored a single mariner-based transposon insertion in hly, encoding the hemolysin Listeriolysin O, while the other harbored a single insertion in prfA, encoding PrfA, a master regulator for hly and numerous other virulence genes. Biofilm formation was significantly reduced in the prfA mutant, and to a lesser extent, in the hly mutant. Inactivation of either hly or prfA significantly reduced L. monocytogenes aggregation. However, both mutants adhered similarly to the wildtype parental strain on cantaloupe rind at either 25 or 37°C. Furthermore, growth and competitive fitness of the mutants on cantaloupe rind was not significantly impacted at either temperature. The findings suggest that, in spite of their involvement in biofilm formation and aggregation, these key virulence determinants may not be required for the ability of L. monocytogenes to colonize fresh produce.

20.
FEMS Microbiol Lett ; 364(20)2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29029084

ABSTRACT

Listeria monocytogenes raises major food safety and public health concerns due to its potential for severe foodborne disease and persistent colonization of food processing facilities. Copper is often employed to control pathogens in agriculture and is increasingly used in healthcare facilities, but mechanisms mediating tolerance of L. monocytogenes to copper remain poorly understood. A mariner-based mutant library of L. monocytogenes 2011L-2858, implicated in the 2011 listeriosis outbreak via whole cantaloupe, was screened for growth at sublethal levels of copper yielding mutant G2B4 with decreased copper tolerance. The transposon was localized in pbp4 (lmo2229 homolog), encoding a penicillin-binding protein (PBP). In addition to reduced copper tolerance, G2B4 exhibited increased susceptibility to ß-lactam antibiotics, reduced biofilm formation and reduced virulence in the Galleria mellonella model. Mutant phenotypes were fully restored upon genetic complementation of G2B4 with intact pbp4. Findings provide the first evidence for the role of a PBP in copper tolerance of L. monocytogenes and suggest that pbp4 may be a suitable target to enable the use of lower levels of copper or enhance the effectiveness of levels currently in use. Given the wide distribution of PBPs and their highly conserved nature, this could have profound impacts in regard to ecology and control of L. monocytogenes and other microorganisms.


Subject(s)
Copper/metabolism , Listeria monocytogenes/metabolism , Listeriosis/microbiology , Penicillin-Binding Proteins/metabolism , Biofilms/drug effects , DNA Transposable Elements , Disease Outbreaks , Humans , Listeria monocytogenes/genetics , Listeriosis/epidemiology , Microbial Sensitivity Tests , Mutation/genetics , Penicillin-Binding Proteins/genetics , Plasmids/genetics , Virulence/drug effects , beta-Lactamase Inhibitors/pharmacology , beta-Lactams/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...